A.小泽做披萨

  • 简单的用状态压缩进行表示状态
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    #define MAX 22
    int n, m, a, b;
    int mark[1 << MAX], idx[1 << MAX];

    bool DP[1 << MAX];

    signed main() {
    IOS;
    cin >> n >> m;
    for (int i = 1; i <= m; i++) {
    int a, b;
    cin >> a >> b;
    --a, --b;
    mark[a] |= (1 << b);
    mark[b] |= (1 << a);
    }
    DP[0] = 1;
    for (int i = 1; i <= n; i++) {
    idx[1 << i] = i;
    }
    for(int i = 1; i < (1 << n); i++) {
    int ind = i ^ (i & (-i)), tmp = (i & (-i));
    if (DP[ind] && ((ind & mark[idx[tmp]]) == 0)) {
    DP[i] = 1;
    }
    }
    ll ans = 0;
    for (int i = 0; i < (1 << n); i++) {
    ans += DP[i];
    }
    cout << ans << endl;
    return 0;

    }

B. 罪犯分组

  • sum提前预处理出这个状态的的冲突数量,DP表示状态的最小分组数量
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    const int MAX = (1 << 20);
    int n, m, k, x, y, sum[MAX], DP[MAX];

    signed main() {
    IOS;
    cin >> n >> m >> k;
    for (int i = 1; i <= m; i++) {
    int x, y;
    cin >> x >> y;
    x--, y--;
    for (int i = 1; i < (1 << n); i++) {
    if ((i & (1 << x)) && (i & (1 << y))) {
    sum[i]++;
    }
    }
    }
    memset(DP, 127, sizeof(DP));
    DP[0] = 0;
    for (int i = 0; i < (1 << n); i++) {
    int s = (1 << n) - i - 1;
    for (int j = s; j > 0; j = (j - 1) & s) {
    if (sum[j] <= k) {
    DP[i | j] = min(DP[i | j], DP[i] + 1);
    }
    }
    }
    cout << DP[(1 << n) - 1] << endl;

    return 0;
    }

C 牛塔

  • 用状态表示当前状态的牛能承受的最大压力
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    const int MAXN = 25, MAXM = (1 << 21) + 5;
    int n, h[MAXN], w[MAXN], s[MAXN], DP[MAXM];
    int ans;
    int check(int x) {
    int res = 0;
    for (int i = 0; i < n; i++) {
    if (x & (1 << i)) {
    res += h[i];
    }
    }
    return res;
    }
    signed main() {
    IOS;
    int H;
    cin >> n >> H;
    for (int i = 0; i < n; i++) {
    cin >> h[i] >> w[i] >> s[i];
    }
    DP[0] = 1e9 + 7;
    for (int i = 0; i < (1 << n); i++) {
    for (int j = 0; j < n; j++) {
    if (!(i & (1 << j)) && DP[i] >= w[j]) {
    DP[i | (1 << j)] = max(DP[i | (1 << j)], min(DP[i] - w[j], s[j]));
    }
    }
    if (check(i) >= H) {
    ans = max(ans, DP[i]);
    }
    }
    if (ans == 0) {
    cout << "Mark is too tall" << endl;
    } else {
    cout << ans << endl;
    }
    return 0;
    }

D 区间回文

  • 采用集合的方法进行;回文直接暴力就好了
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    #define MAX 5005
    int DP[MAX][MAX], JD[MAX][MAX];
    string s;
    signed main() {
    IOS;
    cin >> s;
    s = ' ' + s;
    int len = s.size() - 1;
    for (int i = 1; i <= len; i++) {
    for (int j = 1; j + i - 1 <= len; j++) {
    int l = j, r = j + i - 1;
    if (s[l] != s[r]) continue;
    if (r - l <= 1 || JD[l + 1][r - 1]) {
    JD[l][r] = 1;
    }
    }
    }
    for (int i = 1; i <= len; i++) DP[i][i] = 1;
    for (int i = 2; i <= len; i++) {
    for (int j = 1; j + i - 1 <= len; j++) {
    int l = j, r = j + i - 1;
    DP[l][r] = DP[l + 1][r] + DP[l][r - 1] - DP[l + 1][r - 1] + JD[l][r];
    }
    }
    int q;
    cin >> q;
    while (q--) {
    int l, r;
    cin >> l >> r;
    cout << DP[l][r] << endl;
    }
    return 0;
    }

E. 括号构造

  • DP[l][r] 的最小长度, DP[l][r]一定保证是正确时序列
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    int DP[MAX][MAX];
    string MK[MAX][MAX];
    string SL(char x) {
    if (x == '(' || x == ')') {
    return "()";
    } else {
    return "[]";
    }
    }
    string s;
    signed main() {
    IOS;
    cin >> s;
    int n = s.size();
    s = ' ' + s;
    for (int i = 1; i <= n; i++) {
    DP[i][i] = 1;
    MK[i][i] = SL(s[i]);
    }
    for (int len = 1; len < n; len++) {
    for (int l = 1; l + len <= n; l++) {
    int r = l + len;
    DP[l][r] = 1e9;
    if ((s[l] == '(' && s[r] == ')') || (s[l] == '[' && s[r] == ']')) {
    DP[l][r] = DP[l + 1][r - 1];
    MK[l][r] = s[l] + MK[l + 1][r - 1] + s[r];
    } else {
    DP[l][r] = DP[l + 1][r - 1] + 2;
    MK[l][r] = SL(s[l]) + MK[l + 1][r - 1] + SL(s[r]);
    }
    for (int i = l; i < r; i++) {
    if (DP[l][r] > DP[l][i] + DP[i + 1][r]) {
    DP[l][r] = DP[l][i] + DP[i + 1][r];
    MK[l][r] = MK[l][i] + MK[i + 1][r];

    }
    }
    }
    }
    cout << MK[1][n] << endl;
    return 0;
    }

F. 深度之和最大

  • 最简单的换根DP
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    #define MAX 1000005
    int DP[MAX], sz[MAX];
    vector<int> G[MAX];
    int n, ans = 1;
    void dfs1(int u, int fa) {
    sz[u] = 1;
    for (auto v : G[u]) {
    if (v == fa) continue;
    dfs1(v, u);
    sz[u] += sz[v];
    }
    DP[1] += sz[u];
    }
    void dfs2(int u, int fa) {
    if (u != 1) {
    DP[u] = DP[fa] - sz[u] + n - sz[u];
    }
    for (auto v : G[u]) {
    if (v == fa) continue;
    dfs2(v, u);
    }
    if (DP[u] > DP[ans]) {
    ans = u;
    }
    }
    signed main() {
    IOS;
    cin >> n;
    for (int i = 1; i < n; i++) {
    int u, v;
    cin >> u >> v;
    G[u].push_back(v), G[v].push_back(u);
    }
    dfs1(1, 0);
    dfs2(1, 0);
    cout << ans << endl;
    return 0;
    }

G. 选课

  • 最基础的树形DP
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    #define MAX 305
    int DP[MAX][MAX];
    vector<int> G[MAX];
    int n, m;
    void dfs(int u) {
    for (int v : G[u]) {
    dfs(v);
    for (int i = m + 1; i > 1; i--) {
    for (int j = 0; j < i; j++) {
    DP[u][i] = max(DP[u][i], DP[v][j] + DP[u][i - j]);
    }
    }
    }
    }
    signed main() {
    IOS;
    cin >> n >> m;
    for (int i = 1; i <= n; i++) {
    int f;
    cin >> f >> DP[i][1];
    G[f].push_back(i);
    }
    dfs(0);
    cout << DP[0][m + 1] << endl;

    return 0;
    }

H. k步以内

  • DP1表示子树的, DP2表示不是子树的,每个长度的都要记录
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    define MAX 100005
    int DP1[MAX][30], DP2[MAX][30];
    int n, m;
    int val[MAX];
    vector<int> G[MAX];
    void dfs1(int u, int fa)
    {
    for (int i = 0; i <= m; i++)
    {
    DP1[u][i] = val[u];
    }
    for (int v : G[u])
    {
    if (v == fa)
    continue;
    dfs1(v, u);
    for (int i = 1; i <= m; i++)
    {
    DP1[u][i] += DP1[v][i - 1];
    }
    }
    }

    void dfs2(int u, int fa)
    {
    if (u != 1)
    {
    DP2[u][0] = 0;
    DP2[u][1] = val[fa];
    for (int i = 2; i <= m; i++)
    {
    DP2[u][i] = DP1[fa][i - 1] - DP1[u][i - 2] + DP2[fa][i - 1];
    }
    }
    for (int v : G[u])
    {
    if (v == fa)
    continue;
    dfs2(v, u);
    }
    }
    signed main()
    {
    IOS;
    cin >> n >> m;
    for (int i = 1; i < n; i++)
    {
    int u, v;
    cin >> u >> v;
    G[u].push_back(v), G[v].push_back(u);
    }
    for (int i = 1; i <= n; i++)
    {
    cin >> val[i];
    }
    dfs1(1, 0);
    dfs2(1, 0);
    for (int i = 1; i <= n; i++)
    {
    cout << DP1[i][m] + DP2[i][m] << endl;
    }

    return 0;
    }