A. 多重背包问题 II

  • 用优先队列维护可以做到n2的时间复杂度
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    signed main()
    {
    IOS;
    // solve();
    // return 0;
    int n, m;
    cin >> n >> m;
    //cout << n << ' ' << m << endl;
    for (int i = 1; i <= n; i++)
    {
    int v, w, s;
    cin >> v >> w >> s;
    //s = min(s, m / v);
    deque<int> q;
    //cout << "SS : " << v << ' ' << w << ' ' << s << endl;
    for (int j = 0; j < v; j++)
    {
    q.clear();
    int now = i & 1, pre = (i - 1) & 1;
    for (int _w = j; _w <= m; _w += v)
    {
    while (!q.empty() && DP[pre][q.back()] + (_w - q.back()) / v * w <= DP[pre][_w])
    {
    q.pop_back();
    }
    while (!q.empty() && _w - q.front() > v * s)
    {
    q.pop_front();
    }
    q.push_back(_w);
    DP[now][_w] = DP[pre][q.front()] + (_w - q.front()) / v * w;
    }
    }
    }
    cout << DP[n & 1][m] << endl;

    return 0;
    }

B. 找零升级版

  • 利用二进制优化
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    int n, m;
    bitset<1000005> f;
    int DP[2000005];
    int _;
    signed main() {
    IOS;
    cin >> n >> m;
    for (int i = 1; i <= n ;i ++) {
    int v, w;
    cin >> v >> w;
    int cnt = 1;
    while (w >= cnt) {
    DP[++_] = cnt * v;
    w -= cnt;
    cnt <<= 1;
    }
    if (w) {
    DP[++_] = w * v;
    }
    }
    f[0] = 1;
    for (int i = 1; i <= _; i++) {
    f |= (f << DP[i]);
    }
    for (int i = 1; i <= m; i++) {
    if (f[i]) {
    cout << 1;
    } else {
    cout << 0;
    }
    }
    //cout << endl;
    return 0;
    }

C. 最佳损友

  • 就是用DP求前两个人可能的结果,再去算第三个人
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    #define MAX 2010
    int DP[MAX][MAX];
    signed main() {
    IOS;
    int n;
    cin >> n;
    vector<int> a(n + 1);
    int sum = 0;
    for (int i = 1; i <= n; i++) {
    cin >> a[i];
    sum += a[i];
    }
    DP[0][0] = 1;
    for (int i = 1; i <= n; i++) {
    int x = a[i];
    for (int j = sum; j >= 0; j--) {
    for (int k = sum; k >= 0; k--) {
    if (j >= x) {
    DP[j][k] |= DP[j - x][k];
    }
    if (k >= x) {
    DP[j][k] |= DP[j][k - x];
    }
    }
    }
    }
    int ans = 1e9;
    for (int j = 0; j <= sum; j++) {
    for (int k = j; k <= sum; k++) {
    if (!DP[j][k]) {
    continue;
    }
    int tmp = sum - k- j;
    if (tmp >= k) {
    ans = min(ans, tmp);
    }
    }
    }
    cout << ans << endl;
    return 0;
    }

E. 不降数

  • 计数DP的最基础的写法
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    int dp[50][12];
    int num[50];
    int dfs(int pos, int pre, bool limit)
    {
    if (pos == 0)
    return 1;
    if (!limit && dp[pos][pre] != -1)
    return dp[pos][pre];
    int up = limit ? num[pos] : 9;
    int res = 0;
    for (int i = pre; i <= up; ++i)
    res += dfs(pos - 1, i, limit && (i == num[pos]));
    if (!limit)
    dp[pos][pre] = res;
    return res;
    }

    int solve(int x)
    {
    memset(dp, -1, sizeof(dp));
    int cnt = 0;
    while (x)
    {
    num[++cnt] = x % 10;
    x /= 10;
    }
    return dfs(cnt, 0, 1);
    }
    signed main()
    {
    IOS;
    int u, v;
    while (cin >> u >> v)
    {
    cout << solve(v) - solve(u - 1) << endl;
    }
    return 0;
    }

F. B数

  • 计数DP的小进阶
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    #define MAX 50
    int DP[MAX][MAX][MAX][MAX];
    int n;
    int num[MAX];
    int cnt = 0;
    int INF = 1e18;
    int dfs(int pos, int pre, int mod, int flag, int key) {
    if (pos == 0) {
    if (mod == 0 && flag == 1) {
    return 1;
    } else {
    return 0;
    }
    }
    if (!key && DP[pos][pre][mod][flag] != INF) {
    return DP[pos][pre][mod][flag];
    }
    int maxn;
    if (key == 0) {
    maxn = 9;
    } else {
    maxn = num[pos];
    }
    int res = 0;
    for (int i = 0; i <= maxn; i++) {
    res += dfs(pos - 1, i, (mod * 10 + i) % 13, flag == 1 || (pre == 1 && i == 3), key && maxn == i);
    }
    if (key == 0) {
    DP[pos][pre][mod][flag] = res;
    }
    return res;
    }

    signed main() {
    IOS;

    for (int i = 0; i < MAX; i++) {
    for (int j = 0; j < MAX; j++) {
    for (int k = 0; k < MAX; k++) {
    DP[i][j][k][0] = INF;
    DP[i][j][k][1] = INF;
    }
    }
    }

    int n;
    cin >> n;

    while (n) {
    num[++cnt] = n % 10;
    n /= 10;
    }

    cout << dfs(cnt, 0, 0, 0, 1) << endl;
    //cout << INF << endl;
    return 0;
    }

G 平衡数

  • 用三进制去表示状态
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    ll a,b;
    int num[24];
    int tri[12];
    ll f[24][59049];
    void init()
    {
    tri[0]=1;
    for(int i=1;i<=10;i++)
    {
    tri[i]=tri[i-1]*3;
    }
    }
    int add(int x,int y)//num x,pos y(tms++)
    {
    int tmp=x%tri[y+1]/tri[y],c;
    if(tmp==0)
    {
    c=y%2+1;
    }
    else
    {
    c=tmp%2+1;
    }
    return x+(c-tmp)*tri[y];
    }
    bool check(int sta)
    {
    while(sta)
    {
    if(sta%3==2)return 0;
    sta/=3;
    }
    return 1;
    }
    ll dfs(int x,int sta,bool limit,bool zer)
    {
    if(x==0)return check(sta);
    if(!limit && !zer && f[x][sta]!=-1)return f[x][sta];
    int up=limit?num[x]:9;
    ll res=0;
    for(int i=0;i<=up;i++)
    {
    if(zer && i==0 && x!=1)
    {
    res+=dfs(x-1,sta,limit&&(i==num[x]),zer&&(i==0));
    }
    else res+=dfs(x-1,add(sta,i),limit&&(i==num[x]),zer&&(i==0));
    }
    if(!limit && !zer)f[x][sta]=res;
    return res;
    }
    ll solve(ll x)
    {
    int tp=0;
    while(x)
    {
    num[++tp]=x%10;
    x/=10;
    }
    return dfs(tp,0,1,1);
    }
    int main()
    {
    memset(f,-1,sizeof(f));
    init();
    int T=1;
    while(T--)
    {
    cin >> a >> b;
    cout << solve(b)-solve(a-1)) << endl;
    }
    }

H 国民代表

  • 排序后找先后集合
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    const int mn=305,mod=998244353;
    struct sd
    {
    int p,q;
    }a[mn];
    int f[mn][mn][mn];//f[i][j][k] i ppl pkd j with a minq=k
    int n,k,ans;
    bool cmp(sd x,sd y)
    {
    return x.p<y.p;
    }
    int main()
    {
    cin >> n >> k;
    for(int i=1;i<=n;i++)
    {
    cin >> a[i].p;
    }
    for(int i=1;i<=n;i++)
    {
    cin >> a[i].q;
    }
    sort(a+1,a+n+1,cmp);
    f[0][0][n+1]=1;
    for(int i=1;i<=n;i++)
    {
    for(int j=0;j<=k;j++)
    {
    for(int l=1;l<=n+1;l++)
    {
    // f[i][j][l]=f[i-1][j][l];
    if(a[i].q<l && j!=0)
    {
    f[i][j][l]+=f[i-1][j-1][l];
    f[i][j][l]%=mod;
    }
    f[i][j][min(l,a[i].q)]+=f[i-1][j][l];
    f[i][j][min(l,a[i].q)]%=mod;
    }
    // cerr<<f[i][j][a[i].q];
    }
    }
    for(int i=1;i<=n+1;i++)
    {
    ans+=f[n][k][i];
    ans%=mod;
    }
    cout << ans << endl;
    }